灵魂不等式及其应用

■安徽省太湖中学 李昭平

1. 题目

设函数 $f(x)=e^x-ax-1$, 其中 $a \in \mathbb{R}$. 若 $f(x) \ge 0$ 在 $(-\infty, +\infty)$ 内恒成立, 求 a 的值(2018 课标Ⅲ卷第 21 题压轴题).

2. 分析

本题是常见的一次函数与指数函数的复合型函数问题,利用导数研究其单调性和最值,再根据 $f(x) \ge 0$ 在 $(-\infty, +\infty)$ 内恒成立 $\Leftrightarrow f(x)_{\max} \ge 0 (x \in (-\infty, +\infty))$ 可以求解. 考虑到 $f(x) \ge 0$ 可以转化为 $e^x \ge ax + 1$,这让我们联想到:能否利用常见的恒成立不等式 $e^x \ge x + 1$ $(x \in \mathbb{R}$,当且仅当 x = 0 时等号成立)来处理呢?其实, $e^x \ge ax + 1$ 就是 $ax \le e^x - 1$. 而 $e^x \ge x + 1$ 可以变式为 $\frac{e^x - 1}{x} > 1(x > 0)$ 或 $\frac{e^x - 1}{x} < 1(x < 0)$ 由此得到以下解法.

3. 解答

 $f(x) \ge 0$ 就是 $ax \le e^x - 1$.当 x = 0 时,等号成立, $a \in \mathbb{R}$. 当 x > 0 时, $a \le \frac{e^x - 1}{x}$.由不等式 $e^x \ge x + 1$ (x > 0),得 $\frac{e^x - 1}{x} > 0$

1. 因此 *a*≤1.

当 x<0 时, $a>\frac{e^x-1}{x}$. 由指数型核心不等式 $e^x>x+1$ (x<

0), 得 $\frac{e^{x}-1}{x}$ <1. 因此 $a \ge 1$.

综上可知, 实数a的值是1.

4. 结论

我们常常称恒成立不等式 $e^x \ge x + 1$ ($x \in \mathbb{R}$, 当且仅当 x = 0 时等号成立) 和恒成立不等式 $\ln x \le x - 1$ (x > 0, 当且仅当 x = 1 时等号成立)为"灵魂不等式",指数型与对数型成对出现.证明如下:

法 1 (图像法): 在同一坐标系下作出函数 $f(x)=e^x$ 和 g(x)=x+1的图像,两图像均经过定点(0,1),且 f'(0)=1,即直线 g(x)=x+1 是曲线 $f(x)=e^x$ 在定点(0,1)处的切线,因此 $e^x \ge x+1$ $(x \in \mathbb{R}, y)$ 当且仅当 x=0 时等号成立).

同理知, 直线 y=x-1 是曲线 $y=\ln x$ 在定点(1,0)处的切线, 故 $\ln x \le x-1(x>0$, 当且仅当 x=1 时等号成立).

是, $f(x) \ge f(0) = 0$, 即 $e^x \ge x + 1$ ($x \in \mathbb{R}$), 当且仅当 x = 0 时等号成立.

同理, 令 $g(x)=\ln x-x+1(x>0)$, 得到 $\ln x \le x-1(x>0)$, 当且 仅当 x=1 时等号成立.

5. 应用

纵观近几年数学全国卷与部分省市高考卷我们发现,随着高考对函数与导数知识考查的深入,以指数型恒成立不等式 $e^* \ge x+1(x \in \mathbb{R})$ 和对数型恒成立不等式 $\ln x \ge x-1(x>0)$ 为载体的试题逐渐进入高考试卷. 由于这两个恒成立不等式内涵丰富、结构精巧,易与相关知识交汇与融合,能有效考查学生的思维水平和综合能力,因此往往称之为灵魂不等式.下面结合部分高考题或模考题介绍其应用.

$5.1 \quad e^x \ge x + a \ \text{和 } \ln x \le x + a \ \text{型}$

例 1. (2017 济南市模考卷) 已知不等式 $e^x \ge x + 2a$ 对任意 $x \in \mathbb{R}$ 恒成立,则实数 a 的取值范围是 ()

A.
$$a \le \frac{e}{2}$$
 B. $a \ge \frac{e}{2}$ C. $a \le \frac{1}{2}$ D. $a \ge \frac{1}{2}$

解析: $e^x \ge x + 2a$ 等价于 $2a \le e^x - x$, 即 $2a \le (e^x - x)_{min}$. 由指数刑記碑不等式 $e^x \ge x + 1(x \in R)$ 知 $e^x - x \ge 1$ 当

由指数型灵魂不等式 $e^x \ge x+1$ $(x \in \mathbb{R})$,知 $e^x-x \ge 1$,当 x=0 时, e^x-x 取到最小值 1.

因此 $2a \le 1$, $a \le \frac{1}{2}$. 故选 C.

注意: 利用指数型灵魂不等式 $e^x \ge x + 1$ $(x \in \mathbb{R})$ 的变式 $e^x - x \ge 1$ $(x \in \mathbb{R})$ 解题.

例 2. (2017 合肥市模考卷) 若存在 $x_0>0$, 使不等式 $\ln x_0 > x_0+b$ 成立,则实数 b 的取值范围是 ()

A.
$$b \le -1$$
 B. $b \ge -1$ C. $b \le -e$ D. $b \ge -e$

解析: $\ln x_0 \ge x_0 + b$ 等价于 $b \le \ln x_0 - x_0$, 即 $b \le (\ln x - x)_{\max}(x > 0)$. 由对数型灵魂不等式 $\ln x \le x - 1(x > 0)$, 得 $\ln x - x \le -1(x > 0)$, 因此 $(\ln x - x)_{\max} = -1$.

于是 *b* ≤ −1, 故选 A.

注意: 利用对数型灵魂不等式 $\ln x \le x-1(x>0)$ 的变式 $\ln x = x \le -1(x>0)$ 解题.

5. 2 $e^x \ge ax+1$ 和 $\ln x \le a(x-1)$ 型